
J. Fluid Mech. (1994), 001. 260, pp. 315-331 
Copyright 0 1994 Cambridge University Press 

315 

The stability of statically unstable layers 
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(Received 23 February 1993 and in revised form 18 August 1993) 

We investigate the development of instability in a fluid with density locally of the form 
pn[ 1 - ( N 2 / g )  z + A  sin Kz],  composed of an overall stable uniform gradient of buoyancy 
frequency, N ,  but with a superimposed sinusoidal variation of vertical wavenumber, K,  
and amplitude, A -4 1 ; g is the acceleration due to gravity and z is the upward vertical 
coordinate. Layers exist in which the fluid is statically unstable when the parameter 
r = N2/gKA,  is less than unity. 

When r is zero, the density is sinusoidal in z and the problem reduces to one studied 
by Batchelor & Nitsche (1991). Their solution, which finds a gravest mode of linear 
instability with terms having vertical motions independent of z and with horizontal 
scales large in comparison with K-l, is extended to non-zero r.  An effect of a small, but 
finite, r is to stabilize the fluid, increasing the critical Rayleigh number and the 
corresponding non-dimensional horizontal wavenumber. The vertical scale of the 
mode which first becomes unstable is reduced as r increases. A small sinusoidal shear 
destabilizes the fluid. 

When r approaches unity, the density field contains regions of static instability which 
are of thickness small compared to K-l. The problem then approximates to one studied 
by Matthews (1988). Consistent solutions for the growth of disturbances are obtained 
by truncated series and, following Matthews, by the solution of a Fourier-transformed 
equation. A small uniform shear, characterized by a flow Reynolds number, Re > 0, 
is found to stabilize the fluid, in that it increases the critical Rayleigh number of the 
onset of instability. This suggests that convective Rayleigh-Taylor instability, with 
constant phase lines parallel to the flow, is then the favoured mode of onset of 
instability. At very large Rayleigh numbers and at a Prandtl number of 700, however, 
the growth rate of the most rapidly growing linear disturbances may increase as Re 
increases from zero, and the form of the evolving flow is then less certain. 

The theory is used to estimate the scale and growth rates of instability in overturning 
internal gravity waves in the laboratory experiment described in a companion paper 
(Thorpe 1994). 

1. Introduction 
We consider the stability of a fluid having a vertical density profile given by 

p1 = po[ 1 - ( N 2 / g )  z + A  sin Kz],  (1) 

where po is a reference density, N is a real constant buoyancy frequency characterizing 
the overall stratification, g is the acceleration due to gravity, A (4 1) is a constant and 
K is a vertical, z-directed, wavenumber. This represents the density in a fluid which is 
in an overall state of stable stratification but, if r = N 2 / g K A  < 1, contains local layers 
of static instability as sketched in figure 1. These layers are of small vertical scale if r 
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FIGURE 1. The form of the density profile (1 )  for 2/5x < r < 2 / 3 ~ .  The overturn scale, do, and the 
maximum distance, D, of density exchange with conservation of density are shown. In this range of 
r there are as many as five levels, 2, at which the same density can be found. (In general, 2n+ 1 such 
levels occur when 2/[(2n + 1) K] < r < 2/[(2n - 1) K], n = 1,2,3, . . . .) The vertical scale of convective 
overturn is found to be less than D. 

is close to unity. Batchelor & Nitsche (1991, hereafter referred to as BN), examine the 
case r = 0 when there is no mean fluid flow, and find that a convective mode of 
instability of large horizontal and vertical scale is present, no matter how small is the 
characteristic Rayleigh number. 

Patches of density microstructure in the ocean appear to have a vertical density 
distribution of the general form described by (1). It is, however, often the case that only 
a single vertical profile through a patch is obtained and nothing is known of the 
horizontal density structure or of the microscale velocity field. It is important to 
establish whether the presence of statically unstable regions in such profiles implies that 
the fluid is dynamically unstable (or perhaps even turbulent) or whether it may in fact 
be layered and stable. The study was, however, originally motivated by laboratory 
observations of breaking internal waves. The onset of conditions of ‘breaking’ is 
usually characterized by the overturn or folding of isopycnal surfaces so that, in some 
local region, the density decreases in the direction of gravity. Thin and horizontally 
extensive layers of statically unstable fluid can be produced in this way by large- 
amplitude internal waves in uniformly stratified fluids. We shall derive estimates for the 
growth rates and nature of instability in these layers which can be used to help explain 
the results of experiments and to predict the nature of instabilities which occur in the 
natural environment (Thorpe 1994). 

We consider the stability of the fluid both when stationary and when in a state of 
horizontal flow with vertical shear which is maintained to be steady against the effects 
of viscosity. Steady flow is strictly possible only when the vertical gradient is uniform, 
so that (provided the kinematic viscosity is also uniform) the viscous terms associated 
with the mean flow in the Navier-Stokes equations vanish identically, or if the flow is 
maintained against viscosity by some external body force. Similar conditions are 
imposed regarding the diffusion of the nonlinear density profile (1). BN derive 
equations for the stability of stationary fluid containing statically unstable layers, and 
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point, in particular, to the inconsistency of choosing a nonlinear density profile which, 
in a diffusive fluid, will develop in time so that the basic density is unsteady, a factor 
ignored in the analysis. In the application to internal waves considered here, the flow 
and density fields are also developing, the latter as a consequence of fluid motions and 
diffusion. The governing equations applied to 'frozen' fields of motion and density, 
will serve, however, to establish growth rates for the instabilities which may be 
compared to the viscous and diffusive development of the density field and to the rates 
of change of the motion and flow modification of the density field, that is to the 
timescales of the internal waves. When the instability growth rates are sufficiently large, 
it may be appropriate to disregard the changing flow and the development of the 
density field in the overturned waves resulting either from diffusion or fluid motion. 

We take a flow (U(z), 0,O) with a corresponding perturbation (u, u, w) and seek 
stationary solutions, arguing that these are contiguous to the zero flow solutions with 
which they are compared and, given the symmetrical nature of the velocity fields that 
we choose to select, there is no directional preference for disturbance propagation. 

If the perturbation is independent of x and diffusion of the mean flow and density 
fields can be neglected, the linearized Boussinesq equations of motion reduce to a two- 
dimensional problem in the ( y ,  z)-plane, and the stability equations reduces to 

if the vertical velocity of the perturbation is written w = W(z)eYtcosay, supposed 
periodic in y with wavenumber a, and with growth rate exponent y ,  and 9 is the 
(constant) diffusivity of density and v is the (constant) kinematic viscosity. This 
equation is identical to that derived by BN in the absence of mean flow, and is valid 
even when the mean flow is a function of time, as it is in the internal gravity waves. The 
solution, and the conditions at the onset of instability, are therefore identical to those 
found in the absence of shear. If, on the other hand, the perturbation is independent 
of y ,  the linearized Boussinesq equations may be combined into one equation for a 
stream function $, such that u = a$/az and w = -a$/ax, and 

where N," = - (g/po) dpJdz and V2 = a2/ax2 + a2/az2. When the disturbance is neutral 
with vanishing time derivatives, this equation can be written in the non-dimensional 
form 

a dU' a 
ax dz' az 

a2$ V6$-RaN,"-- = ( l + P e )  U'V'4$-PrReU'2--;V'a$+2-1V'2~ 
ax'2 

$}. (4) 
d2U'i3@ d3U'i3$ d4U' 

+PrRe  U'---2----  
dz" ax' dzI3 az' dzI4 

Here Pr = v / 9 ,  Re = U,, Llv, x' = x /L ,  z' = z/L, where Uo characterizes the velocity 
scale, U' = U/U,,, L is a characteristic lengthscale, and 

with the density gradient, dp,/dz, evaluated at some reference level z = 0 to characterize 
a positive (statically unstable) gradient, and N," is the negative square buoyancy 
frequency, non-dimensionalized with dp,/dzl,, so that for the chosen density (l), 

11 F L M  260 
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N,2 = cos Kz - r .  If the critical Rayleigh numbers found as solutions of (2) are smaller 
that those of (3), a mode with y-directed wavenumber will grow before those with x- 
directed wavenumbers as the Rayleigh number is increased, and longitudinal rolls are 
more unstable than transverse billows (i.e. disturbances with constant phase lines 
directed normal to the flow). 

The paper divides naturally into two parts. In the first we extend BN’s results at 
r = 0 and examine small r (> 0), and a small specified mean shear. In the second we 
consider the stability at larger r (< l), with particular attention to the case when r is 
just smaller than unity which characterizes the conditions as the isopycnal surfaces in 
internal waves first overturn. 

2. Solutions for small values of r 
2.1. No shear 

The stability equation is then (2) which, on substituting for the p1 from (l), becomes 

where Ra = gA(1- r ) / ( 9 K 3 )  is a Rayleigh number, characterized by the maximum 
density gradient (at z = 0) and the lengthscale, K-’, of the density profile. When 
r = 0, this equation and the Rayleigh number are identical to those used by BN. They 
write 

IX 03 

W(z) = C F, sin nKz + C G,  cos nK:, (7) 
n=l n=n 

substitute in (6), convert all terms to Fourier series, and hence find a set of linear 
equations relating the Fn and G, by equating coefficients of odd and even Fourier 
components, sin nKz and cos nKz, respectively. The odd and even components are not 
coupled and may be treated separately. Solutions are found by truncating the series (7) 
at some value n = M,, terms with n > M ,  (later referred to as the truncation number) 
being set to zero. Terms F, and G,  of increasingly large order, n, are found to have 
coefficients that are much larger than those of lower order, n, to which they are related 
in the set of linear equations, and therefore themselves decrease rapidly as n increases. 
Low-order truncation with M ,  = 2 or 3 was found to give formulae relating the 
Rayleigh number and the wavenumbers, which provide quantitatively accurate 
approximations, with the advantage that these could be solved analytically. There 
exists a mode of instability which persists even when Ra approaches zero, so that the 
‘critical’ Rayleigh number for the onset of instability is zero, and the density field is 
always unstable. This gravest mode of instability, the ‘first even mode’ in BN’s 
classification, is characterized by non-vanishing vertical motion (i.e. Go is non-zero) 
with large horizontal scale. The physical mechanism leading to instability is one in 
which the denser layers slide towards disturbance wave troughs, while less dense layers 
move towards wave crests, thus leading to a horizontal variation in the vertically 
integrated density field which, via buoyancy forces, then reinforces the original 
perturbation. 

For sufficiently small r > 0, we may anticipate that, as found by BN, low-order 
truncation will provide accurate prediction. The cosine terms in (6), with (7) 
substituted, are found to be 

m2K4 a2K4Ra m 

C Gn(L,+I_,)cosnKz = C G,{COS [(n + 1) Kz] + cos [(n - 1) Kz]), (8) 
n=n Z(1-r) 12-0 
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where L,  = ( y / 9  + K2n2 + a2) ( y / u  + K2n2 +az)  (K2n2 +az). The appearance of terms 
of sixth-power in n as coefficients of G, helps ensure rapid convergence of the series (7) 
and makes truncation with few terms a good approximation for low-order modes. 

If we first truncate at M ,  = 2, setting G, = 0 for n 2 1 and equating coefficients of 
cos nKz for n = 0 and 1, we find 

and r Ra a2K4] = [ Ra azK4]  Go, 
l - r  

which, on eliminating Go and G,,  give a quadratic equation in Ra. The critical Rayleigh 
number for this mode is the minimum value of Ra that satisfies this condition as a / K  
is varied and when the neutral disturbance y = 0 is selected. 

When r = 0, elimination of Go and G, gives 

Ra2 = 2a2(a2 + K2)3/K8,  (1  1) 

and so Ra tends to zero as a / K  tends to zero. This is the first even mode described by 
BN, with zero critical Rayleigh number and corresponding large horizontal 
wavenumber. The first, odd, and second, even, modes have critical Rayleigh numbers 
of 62.9 and 510 at a / K  = 0.963 and 1.70, respectively. Higher modes have larger 
critical Rayleigh numbers. 

For non-zero r ,  (9) and (10) give an equation in Ra from which an approximate value 
of the critical Rayleigh number can be found when r is sufficiently small; 

Ra,,,, = 2r( 1 - r ) / (  1 - 2r2) at a / K  = 2r. (12) 

r = ( ~ / K ~ v )  = [ ~ a ~ q / 2 - ~ a / ( i  - r ) ] i - q ,  (13) 

r = 2 4 q  - 4-1) (14) 

The growth rates for Prandtl number Pr = 1 are given by 

where q = (a/K)' 6 1, and the maximum growth rates are 

at q = 2r( 1 + q53)/q5, where q5 = 2 Ra r / (  1 - r ) .  Figure 2 shows both the approximate 
solution for the critical Rayleigh number and the corresponding a/K,  together with the 
numerically determined solution of the quadratic equation. This has been verified as 
being accurate quantitatively by calculations with truncation at higher orders. The first 
odd and second even modes at r > 0 have larger critical Rayleigh numbers than at 
r = 0; for example, at r = 0.1, the first, odd, and second, even, modes have critical 
Rayleigh numbers of 87 and 610 at a / K =  1.1  and 1.8, respectively. 

The form of the series (7) chosen to seek solutions, however, is restrictive. As BN 
point out, Floquet theory indicates the existence of modes with period 2.rcM/K, where 
M is an integer. Their first even mode, corresponding to M = 1 ,  nevertheless remains 
the most unstable when r = 0. We have considered even-mode solutions of the form 

m 

W(z) = C Gn, cos (nKz/M) .  
n=O 

(15) 

Substitution into (6) with y = 0 and comparing coefficients then results, as before, 
in a series of relations between coefficients. Truncation at M ,  = 2M+ 1 ,  so that 

11-2 
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FIGURE 2. (a) The critical Rayleigh number, Ru,,,,, for the first even mode as a function of r, showing 
the approximate small-r solution (i) and the exact solution to the governing quadratic equation (ii). 
(b)  The corresponding non-dimensional wavenumber, a /K .  
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FIGURE 3. The critical Rayleigh number for the first even mode and the modes M = 4, 5,  6, 10 and 
20 found by truncation at M ,  = 7, as functions of r. (b) The corresponding non-dimensional 
wavenumbers, a /K .  

Gn, 
in Ra, of the form 

= 0, n > 2M, and elimination of the coefficients gives a set of equations, quartic 

(La, M+i Ln, 1 - f  '1 (Ln, 2M-1 L a ,  M-i -f '1 = f 'Ln, 2M-1 L, M+i?  (16) 

where Ln,lv = (az + M 2 K 2 / N 2 ) 3  + 2rf and ,f = a2K4 Ra/[2( 1 - r ) ] .  
The solutions for the critical Rayleigh numbers and non-dimensional wavenumbers 

for M = 4, 5,  6, 10 and 20 are shown in figure 3.  For 0 6 r < 0.0102, the first even- 
mode solution gives the smallest critical Rayleigh number in the set of modes 
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examined. For 0.0102 < r < 0.01 13, the mode with M = 20 corresponding to cellular 
convection on a vertical scale 40x K-' gives the smallest critical Rayleigh number. The 
limit of stability transfers to M = 10, 6, 5 and to 4 at r = 0.01 13, 0.0154, 0.0198 and 
0.0248, respectively. The vertical scale of the mode is less than the scale of 'potential' 
overturn. For example, the mode M = 5 which marks the critical Rayleigh number in 
0.0198 < r < 0.0248 has a vertical scale of 10xK-'. In this range of r ,  the maximum 
vertical scale over which fluid particles may be exchanged without change in density, 
e.g. the scale D shown in figure 1, is given by 27n: < DK < 33x, and D is greater than 
10nK-l. The sequential reduction in vertical scale as r increases is in accordance with 
the physically based expectation that the stabilizing effect of the stable linear 
component of the density (1) will eventually confine the vertical scale over which 
convection can develop. It also implies that solutions can be found in regions of z 
bounded by levels at which w = 0, which are such that p satisfies the physical 
conditions that it remain positive and finite. The analysis suggests that, for any value 
of r > 0, however small, there will be a mode at some value M (which increases as r 
decreases) which has a lower critical Rayleigh number than the first even mode. We 
shall consider again the transfer of stability between modes in $3.4. 

2.2. The efSect of sinusoidal shear 
We consider for illustration a flow with U = U,sinKz. This choice is dictated by the 
perceived value of finding solutions towards which some progress can be made 
analytically, rather than by the need to match some particular flow field. We seek 
neutral solutions with vanishing time derivatives. In the present case, the existence of 
modes of oscillation at lower critical Rayleigh numbers than found earlier in a 
stationary fluid is a sufficient result for our purpose. In the absence of shear, U, = 0 
and Re = 0 so that the terms on the right-hand side of (4) vanish, and the problem 
reduces to (6) with y = 0. 

We again seek a solution of the form (7). Recurrence relations (which are no longer 
separable) are found relating the & and G ,  terms of the odd and even modes. These 
may be solved by truncation at some order M,. Truncation at M ,  = 2 leads to a cubic 
equation for Ra in terms of Re, Pr and non-dimensional wavenumber which, at small 
values of r and Re2( 1 + Pr), leads to a minimum Rayleigh number, 

Racrit = 2r[ 1 -$ Re2( 1 + Pr)] at a / K  = 2r[ 1 + Re2( 1 + Pr)] ,  (17) 
a solution that may be compared to (12); the shear reduces the critical Rayleigh 
number and increases the corresponding wavenumber. 

Solutions at M ,  = 4 have been computed and an example, at r = 0.001, is shown in 
figure 4. This confirms that the effect of small Re is to decrease the critical Rayleigh 
number and increase the wavenumber at which instability occurs, but demonstrates a 
sensitivity to truncation at large Re which deserves further study. Similar behaviour is 
found for MT = 4 at r = 0.004. Recalling the comments following (5), these results 
imply that as the shear increases from zero, a perturbation that is independent of y will 
have a smaller critical Rayleigh number than one independent of x; a mode with 
constant phase lines transverse to the flow direction will grow more rapidly than 
longitudinal rolls. This effect is expected, given the known properties of sinusoidal 
velocity profiles in destabilizing stably or neutrally stratified inviscid and non-diffusive 
fluids (e.g. Thorpe 1969). The increase in horizontal wavenumber is perhaps counter to 
the expectation that the mean flow might augment the redistribution of density leading 
to the physical mechanism of instability at large scale described in BN, and hence 
increase the dominant wavelength. The solution is a counter-example to the hypothesis 
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FIGURE 4. (a) The variation of critical Rayleigh number and (b) the corresponding non-dimensional 
wavenumbers, a/K,  with Re at r = 0.001 for a sinusoidal shear flow. Curves (i) show the solution with 
M ,  = 4, and (ii) the approximate solution given by (17). 

that the effect of small shear will always promote instability with fastest growing 
wavenumber directed across the flow direction, although this is often found (e.g. 
Winters & Riley 1992). 

3. Stability at finite r < 1 

Matthews (1988) considers the stability of a stationary fluid with density given by 
3.1. Matthews’ results 

p1 = p,(l +B,z-A,z:3), (18) 

resembling a region of static instability embedded in a stable density gradient, and we 
shall show how his results may be used to provide approximate solutions. He defines 
a Rayleigh number, Ra, = gB, d4/vB,  using the scale d = (BJA,); ,  the height, z at 
which the density is equal to the density at z = 0, and the measure, B!, of the density 
gradient at z = 0. In an unbounded fluid, solutions are found by taking the Fourier 
transform of the stability equation (10) with y = 0, giving an equation for 

cc 

@(q) = l-m exp (- iqz) W(z) dz. 
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The boundary conditions are m(0) = 1 and dW/dq = 0 at q = 0, in the expectation of 
an even-valued lowest eigenvalue. The transformed equation is integrated numerically 
from q = 0 using a Runge-Kutta shooting method, the Rayleigh number being varied 
for each selected wavenumber until @approaches zero at large values of q. The critical 
Rayleigh is found to be 88.0 at a non-dimensional wavenumber ad = 1.26. The 
instability takes the form of a cell extending to z = i- 1.69d, with small counter-rotating 
cells above and below. When stress-free boundaries are introduced at z = f L ,  a 
solution is found by writing W as a cosine series 

substituting into the stability equation (2) with y = 0, multiplying by cos [(m -;) x z / L ]  
and integrating from z = - L to L to give a recurrence relation between the G,. 
Solution is found by truncation at some order M,. When L / d  is greater than about 2.5, 
the critical Rayleigh number and corresponding wavenumbers are close to those in the 
absence of boundaries. As L / d  decreases, the presence of the boundaries affects the 
structure of the unstable mode and first increases, then decreases, and finally again 
increases the critical Rayleigh number. A weakly nonlinear analysis is used to show 
that the bifurcation at the critical Rayleigh number is supercritical and that roll 
disturbances are preferred to squares for all values of the Prandtl number. 

For small values of Kz, the density given by the model equation ( 1 )  approximates to 

p1 = p,[l - ( N 2 / g ) ~ + A { K ~ - ~ ( K ~ ) 3 +  ...>I 
= p,[l +A(( l  -P)Kz-;(Kz)~+ ...)I, (21) 

B, = A(1- r )K  and A ,  = $4K3. (22) 

since r = N2/gKA, so (1 )  approximates to (18) if 

Assuming that, when r is sufficiently close to unity, instability is determined by the 
density structure in and near the region of static instability close to z = 0 (and 
separately in the other regions of static instability near z = 2nn K-l, n = & 1, f 2,  . . . of 
( l ) ) ,  the similarity of the density profiles implies that we may therefore use Matthews’ 
results to predict the onset of instability near r = 1 in a fluid with density (1). 

The relationship between the Rayleigh number Ra = gA( 1 - r ) / 9 K 3 ,  and that used 
by Matthews, Ra,, is Ra = Ra,/(36( 1 - r)’), and we may therefore anticipate 
(recalling Matthews’ finding that the critical Ra,  = 88.0 at ad = 1.26) that, near 
r = 1 ,  the critical Rayleigh number is 

Ra = 88.0/(36( 1 - r)’) = 2.44/( 1 - r)’, (23) 
at the non-dimensional wavenumber a / K  = 1.26(6( 1 - r)); since dK = (6( 1 - r));. Given 
Matthews’ results relating to the effect of boundaries, we may also anticipate that when 
the semi-period of the density, 7cK-l exceeds a value of about 2.5d, that is when 
dK = (6(1 -r))k < n/2.5,  or r > 0.75, the development of instability in one statically 
unstable layer (say that surrounding z = 0) will be unaffected by that at neighbouring 
levels surrounding z = f 27c K-l. 

When r is not close to unity, we may ‘fit’ the density profiles ( 1 )  and ( 1 8 )  by equating 
the density gradients at z = 0, and by matching the vertical structure by equating the 
height d of (18) to the vertical scale of the smallest non-zero z,  do, at which the density 
in ( 1 )  is equal to that at z = 0 (see figure 1). The value of do is given by the smallest non- 
zero solution of 

sin Kd, = rKdo. (24) 
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We now proceed as follows. We use Matthews' Fourier transform method to extend 
his results in an infinite fluid with density (18) and to estimate the growth rates of 
unstable disturbances ($3.2). This will allow us to infer the growth rates of disturbances 
to (1) at sufficiently large r ,  < 1. We then, in $3.3, seek solutions of the form (20) which 
satisfy (6) and the condition W = 0 at z = f 7~ K-l, = & L,  at the stably stratified 
interface between neighbouring regions of static instability, in the expectation that this 
will be the appropriate form of solution when r is large and < 1. In both cases we shall 
seek the maximum growth rates and corresponding non-dimensional wavenumbers at 
fixed values of the Rayleigh number. We then, in $3.4, relax the condition that the 
vertical motion is forced to be zero at z = f L ,  seeking solutions instead with 
boundaries at z = f ML, where M is an integer > 1. These solutions are found to have 
lower critical Rayleigh numbers only at values of r significantly less than unity, 
supporting the conjecture that solutions with structure that remains local to the regions 
of static instability at z = 2MnK-l  dominate the onset of instability at large r < 1. 
Finally, in $3.5, we consider the effect of a mean uniform shear. 

3.2. The growth rates for  Matthews' density profiles; no shear 
Equation (2),  with p1 given by (18) and lengths scaled with d = (B1/A$,  becomes 

where /3 = ad is the non-dimensional wavenumber, and z is now the vertical coordinate 
scaled with d and s = d2y / ( v9 ) i  is the non-dimensional growth rate, The equation 
for the Fourier transform, @(q), is then 

3 Ra,P2dW/dq2 = [ ( P r ~ s + P 2 + q 2 ) ( P r - ~ s + P 2 + q 2 ) ( p 2 + q 2 ) -  R U , / ~ ~ ]  @, (26) 

with db?/dq = 0 at q = 0. @(q) tends to zero as q tends to infinity, and @(O) is 
normalized to unity. We follow Matthews' (1988) method of solution, seeking the 
minimum Rayleigh number, minRa,, for each specified value of s, and the 
corresponding P,/3,. For s = 0, this gives the critical Rayleigh number, whilst the 
variation of min Ra, with P, gives the locus of Rayleigh numbers and wavenumbers 
that have the maximum growth rates as Ra, increases. 

Solutions for Pr = 1 and 700 are shown in figure 5.  They converge to Matthews' 
critical Rayleigh number at s = 0. The non-dimensional wavenumbers, P,, increase, 
indicating that, at Ra, > min RaM, the horizontal wavenumber of the fastest growing 
waves will be less than that at which instability first occurs as Ra, increases through 
min Ra,. 

3.3. The growth rates. Vertically bounded solutions; no shear 
Non-dimensionalizing (6) using the scale K-l gives 

where z is written for Kz, q = a / K  and r = y(K2(v9)+) is the non-dimensional growth 
rate. The Rayleigh number is that defined below (6). Comparison of coefficients of 
successive cosine terms when (20) is substituted into (27) results in a set of equations, 
each forming a relation between 2 or 3 of the coefficients G,, which may be solved when 
the series (20) is truncated at some value, M,, chosen here as 7 or 9. As r increases 
towards unity, the vertical scale of the statically unstable region diminishes and in 
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FIGURE 5. The maximum growth rates, s, and corresponding wavenumbers, p,, for the cubic 
density profile (18) as functions of R U , ~  at (a)  Pr = 1, and (b) Pr = 700. 

order to resolve the unstable convective motion in this region, the number of terms in 
the series must increase correspondingly. It is therefore impractical to use this form of 
solution very close to r = 1, but here the correspondence with Matthews’ solution may 
be used to find solutions. 

We have, as in $3.2, chosen to specify the growth rate and to seek the smallest 
Rayleigh number at which this rate can be attained. In order to relate the growth rates 
to the characteristics of the physical environment within which the regions of static 
instability are embedded, we have chosen to display the rates as the non-dimensional 
rate y1 = y / N ,  where N is the buoyancy frequency of the background stable 
stratification in (1); y1 = r((1 -r) /Rar) i .  For comparison with the results of $3.2, we 
use the maximum density gradient (at z = 0) and the vertical scale do of the density 
profile to define a new Rayleigh number, R, scaled with do rather than K-l ,  and non- 
dimensional wavenumber, m, = ad,. The conversion relations are R = ( K L ~ , ) ~  Ra, 
where Kd, is found as the solution of (24), R = R~, (d , /d )~ ,  y1 = s((1 --r)/rR)$, 
old, = q(Kd,) and ad, = /3(d,/d). 

Examples of the results are shown in figure 6 at Pr = 1,7 (typical of thermally 
stratified oceanic waters) and 700 (typical of the salt-stratified laboratory experiments). 
As expected, there is generally good agreement between the values found by the two 
different methods at the larger values of r, confirming our hypothesis that the use of 
Matthews’ results to describe the onset, structure and development of instability for r 
near unity will provide accurate predictions. At r = 0.5, however, the vertically 
bounded truncated series gives systematically lower growth rates and wavenumbers 
than the unbounded Fourier transform solution, except at values of R < 300, where the 
unbounded solution has lower growth rates. Figure 6 shows how, at Pr = 7, the 
maximum growth rates increase with r at constant values of R. The maximum growth 
rates at fixed values of R and r decrease with increasing Pr. For example, at R = LO4, 
r = 0.8, we find y1 = 0.31, 0.28 and 0.10 at Pr = 1 ,  7 and 700, respectively. 
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FIGURE 6(a,  b). For caption see facing page. 
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FIGURE 6. The variation of the maximum non-dimensional growth rate, y1 = y / N ,  Rayleigh number, 
R, and corresponding wavenumbers, ad,, at (a) Pr = 1, Y = 0.9; (b) Pr = 700, r = 0.8. In each case 
solid and open circles show y1 values for the truncated series solution ($3.3) and Fourier transform 
solutions ($3 .2)  respectively. Plus signs and crosses show ad, values for the truncated series and 
Fourier solutions respectively. ( c )  The variation of y1 and ad, with R at Pr = 7 calculated from the 
Fourier transform solution. Values of y1 are given for r = 0.6 to 0.9. 

The critical Rayleigh number, calculated using the bounded truncated series, shows 
a behaviour with r similar to that of the variation of Ra, with L / d  found by Matthews 
(figure 7). The Rayleigh number is sensibly constant with a value near 88 for r > 0.7 
(large L / d ) ,  then rises to a maximum near r = 0.6 before falling to a minimum near 
r = 0.3, and then increasing once again, as r decreases and the scale height do increases. 
This curve was calculated with truncation number M ,  = 9 for r 2 0.5, and M ,  = 7 for 
r < 0.5. Values of R are, however, accurately predicted for r < 0.6 with M ,  = 3 and for 
r < 0.8 with M ,  = 4. 

An example of the vertical structure of the unstable mode at Pr = 1, r = 0.95 at 
y1 = 0.123 calculated with truncation at M ,  = 9, is shown in figure 8. As in Matthews’ 
example, the vertical extent of the cellular motion around z = 0, the height to the first 
point at which W =  0, exceeds the scale do, and there are weak counter-rotating 
motions above and below. 

3.4. Instability at larger vertical scale and at moderate values of r ;  no shear 

We have sought solutions to (6), with y = 0, of the even-mode form 
m 

W(Z) = C Gn, cos [(2n + 1) K z / 2 M ] ,  
n=O 

which satisfy a boundary condition W = 0 at z = +Mn:K-l (the case M = 1 
corresponds to the solution described in 93.3), and of the odd mode 

‘x 

W(z) = C &, sin [(2n + 1) K z / 2 M ] ,  
n=o 
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FIGURE 7. The variation of the critical Rayleigh number, R,  with r. 
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FIGURE 8. The solution for the vertical velocity, W, of the most unstable mode at Ra = 49300 and 
Pr = 1, a / K  = 4.4, together with the corresponding density variation, pl. The arrow shows the height, 
do, at which the density is equal to that at z = 0. The convecting cell, centred at z = 0, extends to the 
level at which W is first zero, at a height exceeding do. 

satisfying W =  0 at z = 0 and z = +2Mn K-l ,  in the expectation that, at sufficiently 
small r ,  modes will be excited in which convective cellular motions extend vertically to 
involve two or more statically unstable regions, as found earlier in 92.1. Solutions are 
found by series truncation and comparison of coefficients. 

The minimum Rayleigh numbers, Ra, and corresponding horizontal non-dim- 
ensional wavenumbers a /K ,  are shown in figure 9, using truncation at MT = 7. 
Exchange of the onset mode of instability from the even mode M = 1 to the odd mode 
M = 2 does not occur until r falls to 0.033, much less than the value r = 2/3n at which 
the density in one unstably stratified layer (e.g. that around z = 0 in figure 1) may be 
equal to that in another neighbouring layer (e.g. that around z = 2nK-l). The 
subsequent transfer to the even mode M = 3 occur at r = 0.024. The modes have 
smaller critical Rayleigh numbers than the BN first even mode at sufficiently large r ,  
as expected from the results presented in 52.1. Comparison of the solutions with 
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FIGURE 9. The variation of (a) the critical Rayleigh number, and (b) the corresponding non- 
dimensional wavenumber, a /K ,  with r for (i) the even mode with M = 1, (ii) the odd mode with 
M = 2;  and (iii) the even mode with M = 3. Also shown is (iv) the solution corresponding to BN’s first 
even mode. Truncation is at M,, = 7. 

M = 1,2,3 at intermediate values of r (0.4, 0.5) shows that the even mode M = 1 
continues to have the lowest Rayleigh number. 

3.5. The efect of a uniform mean shear 
For comparison with 92.2 (and having in view the application to internal waves; 
Thorpe 1994), we consider the effect of a mean shear, U = U’z, on the localized 
instability when r is less than, but close to, unity. Here U’ is the constant shear, and 
without loss of generality, we have taken U to be zero at z = 0. Since we seek a solution 
near r = 1, it is appropriate to use the locally approximate density distribution (18). 

Equation (8) simplifies to 

[(p2-@) d2 -Ra,/3z(l-3z2)] W 

where Re = U’d2/v ,  the equation is non-dimensionalized as in 43.2, and we seek a 
solution proportional to exp (ipx). The Fourier transform then gives 

d2 W dW 
= p Re [4qp Re Pr + (1 + Pr) (p” + q2)’] - 

d q  dq 

+ ((p2 + q2)3 - Rap2 + 2 Re f l p  Re Pr + qCpz + q2) (2 Pr + 3)]) W, 

p2[3 Ra, - Re2 Pr (p” + q2)] 

(31) 

which can be solved as in 53.2 by Runge-Kutta shooting. 
At Pr = 1, the critical Rayleigh number is found to increase approximately linearly 

with Re from its value of 88 at Re = 0, to 200 at Re = 2.7. The critical wavenumber, p, 
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FIGURE 10. The variation with Pr of the derivative with respect to the Reynolds number, Re, of the 
critical Rayleigh number, RaCrit, and the corresponding horizontal wavenumbers, a, evaluated at 
Re = 0, for a uniform shear flow and cubic density (18). 

also increases, reaching 1.56 at the same Reynolds number. Figure 10 shows the 
derivative of the critical Rayleigh number with respect to the Reynolds number at 
constant Pr, evaluated at Re = 0, as a function of Pr, and the derivative with respect 
to Re of the wavenumber at which the critical Rayleigh number is found. Both 
derivatives are positive throughout the range of Prandtl numbers considered, with 
increasing values as Pr increases. Longitudinal rolls in the streamwise direction are 
therefore the preferred mode of the onset of instability, supposing it to be determined 
by the linear equations. This contrasts to the findings in $2.2. 

We have examined the fastest growing disturbances at Pr = 700 at some selected 
values of Ra, to provide estimates that relate to the experiments described by Thorpe 
(1994). At Ra, = 15000, these are found at Re = 0, the most rapidly growing having 
p = 1.8 and growth rate s = 28.9. An increase of Re to 0.5 for 1 < /3 < 3 reduces the 
growth rate of all waves; the fastest growing have /3 = 2.0 and s = 21.2. Similar 
behaviour is found at Ra, = 500000, a Reynolds number increase from 0 to 1 reducing 
the fastest growth rate from 384.6 to 384.2, and increasing the associated wavenumber, 
/I, from 2.75 to 2.85. At Ra,  = 1.51 x lo6, however, the fastest growing mode at Re 
= 0 has s = 762.7 at ,!? = 3.25, but larger growth rates are found as Re increases up to 
a value of 6 (the largest value for which numerical convergence could be obtained), 
with 

s = 762.7+3.37 Re-0.188 Re2 

and ,!? = (3.26 + 0.08 Re) f 0.1 providing good fits to the maximum growth rates and 
corresponding wavenumbers. 

(32) 

4. Discussion 
In $2.1 we showed that the effects of global instability described by BN, with very 

large horizontal and vertical scales and with critical Rayleigh number of zero, are 
modified by a small, stable stratification, 0 < r < 1. As illustrated in figure 2, the effect 
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of increasing r from zero is to increase the critical Rayleigh number and to reduce both 
the horizontal and vertical scales of the disturbance modes that first become unstable. 
The same effect was demonstrated in $3.4 where it was shown how, as the overall 
stratification and r (< 1) were reduced, the vertically limited mode of convection 
described by Matthews (1988) is modified, modes with lower critical Rayleigh numbers 
and larger vertical scales becoming dominant and characterizing the onset of instability 
at sufficiently low values of r .  For r < 2/3n, the density distribution is such that at 
every level, z ,  there is fluid either of greater density above or of smaller density below. 
In this sense, the whole fluid column is unstably stratified. Nevertheless, the infinite 
fluid appears to be stable to infinitesimal disturbances provided the Rayleigh number 
is sufficiently small. Care may be needed, therefore, to properly interpret the state of 
motion inferred to occur in a fluid on the basis of single vertical profiles of density 
through patches of density microstructure in the ocean. A small sinusoidal shear 
reduces the critical Rayleigh number at Pr = 1 ($2.2). 

The results of $ 3  are tested in an examination of the stability and evolution of 
overturning internal waves in a companion paper (Thorpe 1994). We should, however, 
recall here that the size of disturbances, at some time after conditions occur in which 
their growth is first possible, will depend on a time integration of the growth rates. 
These are determined by the temporal changes in the parameters, as well as the 
amplitude of the initial disturbances ; the disturbances which, in practice, first become 
detectable may be different from those which first become unstable. In practice 
nonlinear effects may be important, particularly at the highly supercritical Rayleigh 
numbers considered in $3. The estimates of growth rates therefore provide at best a 
guide to the possible behaviour of disturbances that occur. In the conditions described 
in $ 3  when r is close to, but less than, unity, we have shown that the longitudinal 
disturbances have the smallest critical Rayleigh number when the Reynolds number is 
greater than zero, but small. These are expected to dominate at an early stage of 
growth. Moreover, for moderately supercritical values of the Reynolds number 
longitudinal disturbances have greater growth rates than transverses disturbance. There 
is, however, uncertainty about the fastest growing disturbances at highly supercritical 
values of the Rayleigh number and small Reynolds numbers, in particular when the 
Prandtl number, Pr = 700. Study of the finite-amplitude development of instability 
would be of value and might most profitably be made by numerical techniques. 

The analysis described above was made at the Centre for Water Research at the 
University of Western Australia during a period of study leave in 1992. I am grateful 
to the CWR and the Royal Society for financial support which made the very pleasant 
visit possible. 
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